Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids
نویسندگان
چکیده
The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.
منابع مشابه
Study on gene action and combining abilities for thermotolerant ablilities of corn (Zea mays L.)
High temperature reduces the pollen viability and silk receptivity of corn resulting in poor seed set and reduced yield. Continuously increasing temperature and less frequency and distribution of rainfall coupled with usual canal–closure particularly in Pakistan have significantly been decreasing the grain yield. This problem could be overcome by developing heat tolerant maize hybrids. For this...
متن کاملConventional screening overlooks resistance sources: rootworm damage of diverse inbred lines and their B73 hybrids is unrelated.
The western corn rootworm, Diabrotica virgifera virgifera (LeConte), is a major pest of maize, Zea mays L., in the United States and Europe, and it is likely to increase in importance as a trend toward increased nonrotated maize favors larger rootworm populations. Options for rootworm management in nonrotated maize in Europe and in nontransgenic "refuge" areas in countries that permit transgeni...
متن کاملPLANT RESISTANCE Conventional Screening Overlooks Resistance Sources: Rootworm Damage of Diverse Inbred Lines and Their B73 Hybrids Is Unrelated
The western corn rootworm, Diabrotica virgifera virgifera (LeConte), is a major pest of maize, Zea mays L., in the United States and Europe, and it is likely to increase in importance as a trend toward increasednonrotatedmaize favors larger rootwormpopulations.Options for rootworm management in nonrotated maize in Europe and in nontransgenic “refuge” areas in countries that permit transgenic ma...
متن کاملEvaluation of Water Deficit Tolerance Indices in New Hybrids of Maize (Zea mays L.) with SIMMYT Origin
Regarding the insufficient water resources, developing of cultivars with high tolerance to water deficit can be very effective to optimize water consumption. To identify maize hybrids with higher tolerance to water deficit, 52 single cross hybrids were field evaluated according to a randomized complete block design with three replications in each irrigation regime. The hybrids were produced thr...
متن کاملRecovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.
The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll ...
متن کامل